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Continuous Adjoint-Based Optimization of
Hyperbolic Equations with Nonlinear Differential

Equation Constraints on Periodic Boundary
Conditions

Nhan T. Nguyen

Abstract— This paper presents a continuous adjoint-based op-
timization theory for a general closed-loop transport hyperbolic
model controlled via a periodic boundary control to minimize
a multi-objective cost functional. The periodic boundary control
is subject to a nonlinear differential equation constraint, thus
resulting in a coupling between the hyperbolic equation andthe
ordinary differential equation. Variational principles a re used
to derive the Pontryagin’s minimum principle for optimalit y
that results in a dual adjoint system. A numerical optimization
method is implemented using the adjoint-based second-order
gradient method to solve for the optimal trajectory of the control.
Numerical methods for solving the hyperbolic equation using
an explicit-scheme, wave splitting method and for solving the
adjoint equation using an implicit scheme and a quasi-steady
state method are described.

I. INTRODUCTION

Hyperbolic partial differential equations (PDEs) are usedto
model transport systems whose information is carried from one
point to another within those systems as a function of space
and time [1]. Examples of transport systems are numerous
such as fluid flow in gas distribution pipelines [2], air traffic
systems [3], highway traffic systems [4], to name a few. These
equations describe wave propagation that exists in transport
systems to propagate information from one point to another
within the continuum. As with any PDEs, boundary conditions
are used to specify configurations of these transport systems. If
the information is carried in one direction without returning to
its starting position, then we say that the system is open-loop.
An example of an open-loop system is gas flow through an
aircraft engine. On the other hand, if the information returns
to its starting position, then the system is said to be closed-
loop. An example of a closed-loop system is the cardio-
vascular circulatory system. Boundary conditions associated
with closed-loop systems are usually periodic in nature.

The flow of information is usually supplied at the system
boundary by a forced process that provides a motive force to
move the information along the way by wave propagation. For
example, a common device for accomplishing this objective
in fluid transport systems is a pump which supplies a positive
pressure head to displace the fluid volume in the flow direction.
Such a process whereby the control is applied at the boundary
of the continuum is called a boundary control process. In real
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systems, boundary control processes are often governed by
other auxiliary dynamical processes. For example, a positive-
displacement pump may be driven by an electrical motor that
imposes a constraint on the pump speed according to the motor
torque dynamics. The pump speed in this case is a boundary
control variable. Thus, in the present framework, we wish to
study a boundary control process of a closed-loop transport
system modeled by hyperbolic PDEs that is coupled to a
dynamical system governed by nonlinear ordinary differential
equations (ODEs) via a periodic boundary condition.

In this study, we will develop a continuous adjoint theory
to deal with this type of closed-loop transport systems. The
theory will then be applied to develop a numerical optimiza-
tion for a closed-loop fluid transport system to minimize a
multi-objective cost function. Solutions to hyperbolic adjoint
systems are based on an implicit-scheme, first-order upwind
method as well as a quasi-steady state method. We demonstrate
the optimization method by a numerical example of a closed-
loop fluid flow problem.

II. HYPERBOLIC TRANSPORT MODEL

Transport phenomena are governed by the conservation laws
equations which dictate the conservation of some quantities
such as traffic density, mass flux, and enthalpy. These equa-
tions are generally hyperbolic in nature. For a 1-D system,
these equations are expressed in a conservation form as [5]

∂y

∂t
+

∂F (y, x)

∂x
+ Q (y, x) = 0 ∀x ∈ [0, L] , t ∈ [0, T ]

(1)
wherey (x, t) : [0, L]× [0, T ] → R

n in classC1 is a vector of
conserved quantities,F (y, x) is a flux function, andQ (y, x)
is a non-homogeneous source term. IfQ (y, x) = 0, then the
steady state solution of (1) is the conservation laws

F (y, x) = C ∀x ∈ (0, L) (2)

whereC is a constant vector.
By explicit differentiation, (1) can be rewritten in as

∂y

∂t
+ A (y, x)

∂y

∂x
+ B (y, x) = 0 ∀x ∈ (0, L) , t ∈ (0, T )

(3)
whereA (y, x) : R

n × [0, L] → R
n × R

n is a characteristic
matrix such thatA (y, x) = Fy (y, x) and B (y, x) : R

n ×
[0, L] → R

n is a non-homogeneous source term such that
B (y, x) = Q (y, x) + Fx (y, x).



2

Equation (3) is a system of first order, quasilinear hyperbolic
equations due to the fact that the matrixA hasn real, distinct
eigenvalues such that

λ1 (A) < λ2 (A)< . . .λn (A)

for all y (x, t) ∈ R
n, x ∈ [0, L], andt ∈ [0, T ].

Under this condition, the matrixA is diagonalizable using
a similarity transformation [6]

A = ΦΛΦ−1 (4)

whereΦ is an matrix of the right eigenvectors andΛ is a
diagonal matrix of the right eigenvalues ofA

Λ = diag (λ1, λ2, . . . , λm, λm+1, λm+2, . . . , λn) (5)

wherem < n is the number of negative eigenvalues.
The eigenvalues are the wave speeds of the transport sys-

tems and the direction of the wave propagation is called a
characteristic direction. Ifm > 0, the information in the
continuum is carried in both the upstream and downstream
directions by negative wave speedsλi, i = 1, 2, . . . , m and
positive wave speedsλi, i = m+1, m+2, . . . , n; respectively.
If the solution domain is0 ≤ x ≤ L, then for the information
to be transported in the upstream direction by the negative
wave speeds, information must exist at the boundaryx = L.
Similarly, information must also exist at the boundaryx = 0
in order for the information to be carried downstream by
the positive wave speeds. Therefore, the number of upstream
and downstream boundary conditions must match the number
of negative and positive eigenvalues. This is known as the
boundary condition compatibility.

Fig. 1 - Closed-Loop Transport Model

In a closed-loop transport system, information is carried
from one point to another and then returned back to the starting
position as illustrated in Fig. 1. To enable this information
flow, a periodic boundary control process is embedded within
the system. For a closed-loop system, the boundary conditions
at x = 0 are affected by the boundary conditions atx = L

since the information must be returned to its starting position.
Thus, in general for a closed-loop system, we specify the
following general nonlinear periodic boundary condition for
(2)

y (0, t) = g (y (L, t) ,u (t)) ∀t ∈ [0, T ] (6)

whereu (t) : [0, T ] → R
m in classC1 is a boundary control

vector, andg (y (L, t) ,u) : R
n × R

m → R
n is a nonlinear

forcing function that relates the transport state vectors at x = 0
andx = L and the boundary control vectoru.

Theorem 1:To ensure the boundary condition compatibility
for all signs of eigenvalues, the Fréchet derivative or the
Jacobian ofg with respect toy (L, t) is required to have a
full rank or

dim
[

gy(L,t)

]

= n (7)
Proof: Let m be the number of negative eigenvalues.

If m = 0, then from (6), there aren independent boundary
conditions withy (0, t) that are sufficient to provide informa-
tion for n positive eigenvalues. Thus, the compatibility for
positive eigenvalues is satisfied. Ifm = n, since gy(L,t)

is full rank from (7), then there are alson independent
boundary conditions withy (L, t) that are sufficient to provide
information forn negative eigenvalues. The compatibility for
negative eigenvalues is thus satisfied. If0 < m < n, we
choosen−m independent boundary conditions withy (0, t).
Then, From (7), there arem remaining boundary conditions
with y (L, t). Since there arem − n positive eigenvalues and
m negative eigenvalues, then the compatibility for mixed-sign
eigenvalues is thus satisfied.
In many real systems, boundary control processes are actu-
ally controlled by other auxiliary processes. These auxiliary
processes may be dynamical so that their dynamics can be
described by a nonlinear ODE

u̇ = f (y (0, t) ,y (L, t) ,u,v) (8)

wherev (t) : [0, T ] → R
l is an auxiliary control vector that

belongs to a convex subset of admissible auxiliary control
Vad ⊆ R

l, and f (y (0, t) ,y (L, t) ,u,v) : R
n × R

n × R
m ×

R
l → R

m is a nonlinear function.
Thus the auxiliary control vectorv actually influences the

boundary control vectoru, which in turn controls the behavior
of the closed-loop transport system described by (3) and the
periodic boundary condition (6).

III. CONTINUOUS ADJOINT OPTIMALITY

Optimal control and optimization theories of hyperbolic
systems has been studied extensively in mathematical litera-
ture. Within the theoretical framework of systems governed
by PDEs, control of such systems can exist as distributed
control, boundary control, interior pointwise control, orothers.
Hou and Yan studied the long time behavior of solutions for
an optimal distributed control problem for the Navier-Stokes
equations [8]. Nguyen et al investigated a flow control problem
with interior pointwise control [9]. Optimal control problems
of transport systems with boundary control have been exam-
ined for many different types of constraints imposed on either
state or control variables. Raymond and Zidani investigated
necessary optimality conditions in the form of a Pontryagin’s
minimum principle for semilinear parabolic equations with
pointwise state constraints and unbounded control [10]. Casas
et al established second order sufficient conditions for local
optimality of elliptic equations with pointwise constraints
on the boundary control and equality and set-constraints on
state variables [11]. Kazemi obtained adjoint equations for a
degenerate hyperbolic equation [12].
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Adjoint method is well-known in optimization theories as it
provides an indirect method for solving optimization problems.
For a transport system governed by hyperbolic equations, two
types of adjoint formulation are used: discrete adjoint and
continuous adjoint. Any hyperbolic equation can generallybe
discretized into a system of ODEs by means of numerical
discretization techniques such as finite-difference or finite-
element methods. If the adjoint method is formulated with
the discretized hyperbolic equations, then this is known as
discrete adjoint method. On the other hand, continuous adjoint
method is normally applied directly to the original hyperbolic
equations. This method has been used in aerodynamic design
optimization studies involving the Euler and Navier-Stokes
equations [13]. Nadarajah et al compared the discrete and con-
tinuous adjoint methods in aerodynamic design optimization
and suggested that the continuous adjoint method affords a
certain advantage over the discrete adjoint method for Navier-
Stokes flow problems [14]. In the present study, we extend
this method to the present hyperbolic system with nonlinear
differential equation constraints on a periodic boundary con-
dition. To formulate the continuous adjoint method for this
system, we seek a solution of the hyperbolic system above
that minimizes the following multi-objective cost functional

min J (y,u,v) =

∫ T

0

∫ L

0

L1 (y) dxdt

+

∫ T

0

L2

(

y0,yL,u,v
)

dt (9)

whereL1 is an objective function defined over the continuum
of the transport system,L2 is an objective function defined
on the system boundary, and the superscripts0 and L are
short hand notations denoting the associated vector quantity
evaluated atx = 0 andx = L, respectively.

The following assumptions are required:
(A1): Equation (3) admits smooth solutions for shock-free

conditions.
(A2): v ∈ L2, the space of real value functions inRl for

which the norm‖v‖ is square-integrable.
(A3): The Fréchet derivatives ofL1, L2, B, g, f , andh

with respect toy, y0, yL, u, v, andw exist and are bounded
so as to satisfy the Lipschitz condition.

We note that (1) also has discontinuous solutions known as
entropy solutions [7]which will not be treated here.

The transport system above is posed as a boundary control
problem of hyperbolic equations with nonlinear differential
equation constraints.

Lemma 1:Let D be a nonlinear differential operator and
D∗ be its adjoint differential operator such that for some
z (x, t) ∈ R

n andλ (x, t) ∈ R
n

Dz = A
∂z

∂x
(10)

D∗λ =
∂

∂x

(

A>λ
)

(11)

where the superscript> is the transpose operator, then the

following inner product operation inL2 is equivalent

〈Dz, λ〉(x,t) = −〈z, D∗λ〉(x,t)

+
〈

zL,
(

A>λ
)L
〉

t
−
〈

z0,
(

A>λ
)0
〉

t
(12)

Proof: The inner product〈Dz, λ〉(x,t) in L2 is

〈Dz, λ〉(x,t) =

∫ T

0

∫ L

0

λ>Dzdxdt

Integrating by parts yields

∫ T

0

∫ L

0

λ>Dzdxdt = −

∫ T

0

∫ L

0

z>D∗λdxdt

+

∫ T

0

[

(

zL
)> (

AL
)>

λL −
(

z0
)> (

A0
)>

λ0
]

dt

We define the following inner products
〈

zL,
(

A>λ
)L
〉

t
−
〈

z0,
(

A>λ
)0
〉

t
=

∫ T

0

[

(

zL
)> (

AL
)>

λL −
(

z0
)> (

A0
)>

λ0
]

dt

Equation (12) is thus obtained.
Definition 1: Let F : X → Y be a functional withX, Y in

Banach spaces andα ∈ X . If there exists a continuous linear
operator∇F (α) : X → Y for any variationδ ∈ X such that

lim
ε→0

∥

∥

∥

∥

∇F (α) δ −
F (α + εδ) − F (α)

ε

∥

∥

∥

∥

= 0

then∇F (α) is called a Gâteaux derivative ofF at α.
We now define the Hamiltonians

H1 (y, x, λ) = L1 − λ>B (13)

H2

(

y0,yL,u,v, µ
)

= L2 + µ>f (14)

We are now ready to state the necessary conditions for
optimality.

Theorem 2:If (A1)-(A3) are fulfilled and if (ȳ, ū, v̄) is
an optimal solution of (9), then there exist adjoint variables
λ (x, t) : [0, L]× [0, T ] → R

n andµ : [0, T ] → R
k that satisfy

the following dual adjoint system

λt +
(

A>λ
)

x
+ H>

1,y = 0
(

A>λ
)L

= H>

2,yL + g>

yL

(

A>λ
)0

+ g>

yLH>

2,y0

λ (x, T ) = 0











(15)

µ̇ = −H>
2,u − g>

u

(

A>λ
)0

− g>
u

H>

2,y0

µ (T ) = 0

}

(16)

with a terminal time transversality condition
∫ L

0

L1|t=T dx + L2|t=T = 0 (17)

such that the optimal control is one that satisfies the following
Pontryagin’s minimum principle

v̄ = arg min
v∈Vad

H2

(

ȳ0, ȳL, ū,v, µ
)

(18)
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Proof: Let α = (z,p) be solutions toβ = (ȳ, ū) in
variations for a variationq in v̄, then the variation in the cost
functional from (9) is computed as

∆J (q) = ∇J (β) + J (β, v̄ + q) − J (β, v̄) > 0

where the Gâteaux derivative ofJ at β is evaluated as

∇J (β) =
〈

H>
1,y, z

〉

(x,t)
− 〈λ, zt〉(x,t) − 〈λ, Dz〉(x,t)

+
〈

H>

2,y0 , z
0
〉

t
+
〈

H>

2,yL , zL
〉

t
+
〈

H>
2,u,p

〉

t
− 〈µ, ṗ〉t

+ δt

(

∫ L

0

L1|t=T dx + L2|t=T

)

From the boundary condition (6), we have the following
variations

z0 = g>

yLzL + g>
u
u

From Lemma 1 and the variations in the boundary condition
(6) plus vanishing variations in initial conditions for (3)and
(8), this becomes

∇J (β) =
〈

λt + D∗λ + H>
1,y, z

〉

(x,t)

− 〈z (x, T ) , λ (x, T )〉x
〈

g>

yLH>

2,y0 + g>

yL

(

A>λ
)0

+ H>

2,yL −
(

A>λ
)L

, z
〉

t

+
〈

g>
u

(

A>λ
)0

+ g>
u

H>

2,y0 + H>
2,u + µ̇>,p

〉

t

− µ> (T )p (T ) + δt

(

∫ L

0

L1|t=T dx + L2|t=T

)

Setting∇J (β) = 0 for arbitrary variationα results in (15)-
(17). Then the variation in the cost functional becomes

∆J (q) =

∫ T

0

[

H2

(

ȳ0, ȳL, ū, v̄ + q, µ
)

− µ> ˙̄u
]

dt

−

∫ T

0

[

H2

(

ȳ0, ȳL, ū, v̄, µ
)

− µ> ˙̄u
]

dt > 0

This leads to the Pontryagin’s minimum principle

H2

(

ȳ0, ȳL, ū, v̄ + q, µ
)

> H2

(

ȳ0, ȳL, ū, v̄, µ
)

for all values of the variationq.
Equation (18) is the equivalent Weierstrass condition for strong
variations. For weak variations whenv is unconstrained and
L1 andL2 are convex, the Pontryagin’s principle leads to the
Legendre-Clebsch condition

H2,v

(

ȳ0, ȳL, ū, v̄, µ
)

= 0

H2,vv

(

ȳ0, ȳL, ū, v̄, µ
)

> 0

}

(19)

IV. NUMERICAL OPTIMIZATION

Adjoint-based optimization of the coupled hyperbolic-ODE
system in the adjoint framework requires solving the solution
of the control variablev (t), which is a function of the adjoint
variable µ (t) according to (19). However, the solutions of
the adjoint variablesλ (x, t) andµ (t) depend on the solution
of the hyperbolic variabley (x, t) and the boundary control
u (t), which in turn is a function of the control variablev (t).

This circular dependency and the fact that the hyperbolic-
ODE system is defined at the initial time while the adjoint
dual system is usually specified at the terminal time pose a
challenge for the nonlinear constrained optimization.

Thus, for an adjoint-based nonlinear optimization, the so-
lution usually involves a two-point boundary value problem
whereby a original hyperbolic-ODE system is solved by
forward-time integration from the initial time. On the other
hand, the adjoint system is usually solved by backward-
time integration from the terminal time when its solution is
normally specified. The solution of this optimization problem
is further complicated by the nonlinear coupling between the
hyperbolic PDE and ODE at the periodic boundary. Since a
PDE system is usually solved by discretization of the solution
domain into a finite-dimensional system of potentially large
number of grid points for improved numerical accuracy, this
generally can result in a significantly large-scale optimization
problem. The size and complexity of the discretized hyperbolic
PDE constraints often pose significant challenges in numer-
ical optimization methods for these systems. For instance,
3-D hyperbolic problems can result in a PDE simulation
that can often scale to millions of variables. Large-scale
optimization problems are a current subject of research in
the field of numerical optimization [15]. Moreover, due to
numerical stability, hyperbolic PDE solutions may use explicit
numerical scheme that requires very small time steps which
can significantly contribute to the computational speed fora
single iterative solution.

Fig. 2 - Schematic Diagram of Gradient Method

For a general optimization problem, the gradient method has
a certain appeal in that the system equations are solved exactly
at each iteration, with the control variable being perturbed
from step to step to “home in” on the optimal solution. In other
words, the algorithm simulates the system dynamic response
with varying control histories from one iteration to the next.
The solution method usually starts with an initial guess of the
control. This then allows the state equations to be completely
determined by integration forward in time using the specified
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initial conditions. Once the state trajectory is computed,the
adjoint equations are integrated backward in time using the
teminal time transversality conditions. The control is then
updated for the next iteration. The whole solution process is
iterated until a convergence on the control is obtained [16].
A schematic of the gradient optimization for this particular
PDE-ODE system is shown in Fig. 2.

As seen from Fig. 2, the gradient method utilizes the control
gradient of the Hamiltonian functionH2 to compute the
control variablev iteratively according to

v(p+1) = v(p) − ε(p)H>

2,v(p) (20)

splitted whereε is a positive-definite control-gradient weight-
ing matrix andp is the iteration index.

This update is the well-known steepest-descent algorithm.
Visualizing a bowl-shaped Hamiltonian functionH2 as il-
lustrated in Fig. 3, the gradientH2,v defines the magnitude
and direction of the local slope of the Hamiltonian function.
Perturbing the control by some function ofH2,v moves the
control toward the bottom of the bowl. Proper selection of the
step size is critical for a rapid convergence to the minimizing
control. If ε is too small, the convergence may require a large
number of iterations. On the other hand, ifε is too large, the
convergence may not occur at all. Therefore, the effectiveness
of a gradient method is predicated upon a judicious choice of
the weighting matrixε. If the weighting matrixε is the inverse
of the Hessian matrix of the Hamiltonian functionH2, then
the method is known as a second-order gradient or Newton-
Raphson method as [17]

v(p+1) = v(p) −
[

H
(p)
2,vv

]−1

H>

2,v(p) (21)

Fig. 3 - Steepest Descent Approach to a Minimum
Hamiltonian Function

If H2 is quadratic inv, then the method should converge
within two iterations [17]. However, if the initial guess tostart
the method is too far off the actual solution, the method may
not converge at all. In practice, the Hessian matrixH2,vv

is time consuming to calculate analytically, but a numerical
evaluation of the Hessian matrix may be subject to a numerical
accuracy problem.

V. COMPUTATIONAL METHODS

To implement the gradient algorithm, we need to solve
the hyperbolic and adjoint systems. The simplest type of
spatial discretization for a first-order, hyperbolic PDE isthe
first-order upwind finite-difference method [18]. In flow with
shocks, spatial discretization may not have sufficient stability
requirements and could cause numerical oscillations at the
discontinuities. Various spatial discretization schemessuch as
the Lax-Wendroff method incorporate an artificial viscosity
to dampen these numerical oscillations. From the physical
interpretation of wave speeds, the eigenvalues of the matrix
A dictates the type of numerical methods for the hyperbolic
PDEs. The most general case is when the matrixA has mixed-
sign eigenvalues. In this case, the matrixA can be splitted into
a semi-positive definite matrix and a semi-negative definite
matrix as

A = A+ + A− (22)

whereA+ = ΦΛ+Φ
−1 andA− = ΦΛ−Φ

−1.
Equation (3) can be written in a wave-splitting form as

Φ−1yt + Λ+Φ−1yx + Λ−Φ−1yx + Φ−1B = 0 (23)

We let Φ−1 = Ψ+ + Ψ− where Ψ+ = Λ+Λ−1Φ−1

and Ψ− = Λ−Λ−1Φ−1. We note that if Λ =
diag (λ1, . . . , λm, λm+1, . . . , λn) where λi < 0 for i =
1, . . . , m and λi > 0 for i = m + 1, . . . , n, then
Λ+Λ−1 = diag (0, . . . , 0, 1, . . . , 1) and Λ−Λ−1 =
diag (1, . . . , 1, 0, . . . , 0). In order for (23) to converge to a
correct steady state solution, we need to maintain a numerical
consistency between the steady state form and the hyperbolic
form. This is done by evaluating all the matrices in (23)
at a prior grid point for the positive wave speeds and at a
current grid point for the negative wave speed. Using this
approach, (23) is now discretized using a wave-splitting, first-
order upwind finite-difference method as

Ψ+
i−1

dyi

dt
+ Λ+

i−1Ψ
+
i−1

yi − yi−1

∆x
+ Ψ+

i−1Bi−1 = 0 (24)

Ψ−

i

dyi

dt
+ Λ−

i Ψ−

i

yi+1 − yi

∆x
+ Ψ−

i Bi = 0 (25)

where i = 2, 3, . . . , M − 1 denotes the index of the interior
points not on the boundary such thatxi = i−1

M−1L andyi (t) =
y (xi, t).

We now combine Eqs. (24) to (25) into a vector form as

dyi

dt
+ A+

i−1

yi − yi−1

∆x
+ A−

i

yi+1 − yi

∆x
+ Bi−1/2 = 0 (26)

where
A+

i−1 =
(

Ψ+
i−1 + Ψ−

i

)−1
Λ+

i−1Ψ
+
i−1

A−

i =
(

Ψ+
i−1 + Ψ−

i

)−1
Λ−

i Ψ−

i

Bi−1/2 =
(

Ψ+
i−1 + Ψ−

i

)−1 (
Ψ+

i−1Bi−1 + Ψ−

i Bi

)

To solve for Eq. (26), we need the information on the system
boundaries imposed by the periodic boundary condition (6).
Since gy(L,t) is full rank, g is invertible with respect to
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y (L, t). Therefore, the periodic boundary condition (6) is
equivalent to

y (L, t) = g−1 (y (0, t) ,u) (27)

The nonlinear periodic boundary condition (6) can now be
decomposed into

Λ+Λ−1y1,j+1 = G (yM,j+1,uj+1) (28)

Λ−Λ−1yM,j+1 = H (y1,j+1,uj+1) (29)

where G = Λ+Λ−1g and H = Λ−Λ−1g−1, and j =
1, 2, . . . , N − 1 denotes the time index such thattj = j−1

N−1T .
At the incoming boundaryx = 0, i = 1 so that (??) cannot

admit a positive wave which would require the solution to
include a point upstream ofx = 0 that is nonexistent. There-
fore, only the negative wave speed characteristic equation(25)
is admitted. Using the Euler’s method, we combine (25) with
(28) as

(

Ψ−

1,j + Λ+Λ−1
)

y1,j+1 − G (yM,j+1,uj+1) = Ψ−

1,jy1,j

− Λ−

i,jΨ
−

i,j

(

y2,j − y1,j

∆x

)

∆t − Ψ−

i,jBi,j∆t (30)

where the time step∆t is chosen to satisfy the following
condition

∆t ≤ min

{

∆x

(1 + α) max |λ (A)|
,

2

max |λ (fu)|

}

(31)

The first condition is the Courant-Friedrichs-Levy (CFL)
condition for (26). The term1 + α is due to the contribution
of the source termB. The second condition is the numerical
stability condition for (8) using an explicit time integration
scheme.

We next consider the boundary atx = L, i = M . The
situation is now reverse whereby the solution can only admit
the positive eigenvalue characteristic equation (24) which can
be combined with (29) to yield
(

Ψ+
m−1,j + Λ−Λ−1

)

ym,j+1 − H (y1,j+1,uj+1) =

Ψ+
m−1,jymj − Λ+

m−1,jΨ
+
m−1,j

(

ym,j − ym−1,j

∆x

)

∆t

− Ψ+
m−1,jBm−1,j∆t (32)

Equations (30) and (32) are nonlinear. An iterative method
is implemented to search for the zero solution ofy1,j+1

and ym,j+1 using information from the previous time step.
To solve these equations, the boundary controlu must be
determined for a given time history of the controlv by
integrating (8). Once the information at the system boundary
has been determined, the solution ofyi,j+1 at the interior
points can be found by integrating (26) using Runge-Kutta
or Euler’s method.

In order to compute the adjoint dual system, we transform
(15) and (16) by reversing the space and time variables using
a distance-to-go variableχ = L−x and a time-to-go variable
τ = T − t. We also letϑ (χ, τ) = λ (x, t) andν (τ) = µ (t).
Then, (15) and (16) becoms

ϑτ +
(

A>ϑ
)

χ
+ B>

y
ϑ − L>

1,y = 0 (33)

(

A>
)L

ϑ0 = g>

yL

(

A>
)0

ϑL +
(

f>
yL + g>

yLf>
y0

)

ν (34)

ν̇ =
(

f>
u

+ g>
u
f>
y0

)

ν + g>
u

(

A>
)0

ϑL + L>
2,u (35)

The advantage of the reversal transformation is that it
generally results in a stable adjoint equation backward in
space and time when the hyperbolic equation is normally
stable forward in time. This stability is necessary for any
numerical optimization process to succeed. Equation (33) can
be discretized as

dϑk

dτ
+

(

A+
i

)>
ϑk −

(

A+
i+1

)>
ϑk−1

∆χ

+

(

A−

i−1

)>
ϑk+1 −

(

A−

i

)>
ϑk

∆χ

+ Λ+Λ−1
(

B>
yi+1

ϑk−1 − L>
1,yi+1

)

+ Λ−Λ−1
(

B>
yi

ϑk − L>
1,yi

)

= 0 (36)

wherek = 2, 3, . . . , M − 1 represents the index ofχk such
that k = M − i + 1.

Generally, adjoint equations are quite sensitive to numerical
round-off errors and differences in time scales, which may
potentially cause numerical instability. In order to prevent
numerical errors, an implicit scheme for integrating (36) could
be used, but the numerical method is much more complex than
an explicit scheme and involve a full matrix inversion at each
time step. The implicit-scheme discretization is

ϑk,l+1 − ϑk,l

∆τ
+

(

A+
i,j−1

)>
ϑk,l+1 −

(

A+
i+1,j−1

)>
ϑk−1,l+1

∆χ

+

(

A−

i−1,j−1

)>
ϑk+1,l+1 −

(

A−

i,j−1

)>
ϑk,l+1

∆χ

+ Λ−Λ−1
(

B>
yi+1,j−1

ϑk−1,l+1 − L>
1,yi+1,j−1

)

+ Λ−Λ−1
(

B>
yi,j−1

ϑk,l+1 − L>
1,yi,j−1

)

= 0 (37)

where l = 2, 3, . . . , N represents the index ofτl such that
l = N − j + 1.

At the boundary, the adjoint solution is treated in a similar
manner as before whereby the characteristic adjoint equations
for the positive and negative wave speeds are separated along
with the boundary condition (34)

ϑ1,l+1 − ϑ1,l

∆τ
+

(

A−

M−1,j−1

)>

ϑ2,l+1 −
(

A−

M,j−1

)>

ϑ1,l+1

∆χ

+ Λ−Λ−1
(

B>
yM,j−1

ϑ1,l+1 − L>
1,yM,j−1

)

= 0 (38)

ϑM,l+1 − ϑM,l

∆τ
+

(

A+
1,j−1

)>
ϑM,l+1 −

(

A+
2,j−1

)>
ϑM−1,l+1

∆χ

+ Λ+Λ−1
(

B>
y2,j−1

ϑM−1,l+1 − L>
1,y2,j−1

)

= 0 (39)

ϑ1,l+1 = A−>

M,j−1g
>
yM,j−1

A>
1,j−1ϑM,l+1

+ A−>

M,j−1

(

f>
yM,j−1

+ g>
yM,j−1

f>
y1,j−1

)

νl+1 (40)
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Equations (37) to (40) must be assembled into a linear
matrix equation for a simultaneous solution at a future time
stepl + 1 as a function of the current time stepl.

Another approach to improving the numerical stability of
the adjoint equation (33) is by treating it as a quasi-steady
state approximation. This is possible if the time scale is
substantially different between the adjoint PDE (33) and
the adjoint ODE (35). This time scale difference can be
inferred by the magnitude of the largest eigenvalues offu and
A. Generally, transport systems carry information by wave
propagation at a faster speed than the dynamics imposed at
the system boundaries. Another justification for this approach
is that the control variablev (t) that optimizes the hyperbolic
system is a direct function of the adjoint variableµ (t), but
is only indirectly influenced by the adjoint variableλ (x, t)
on the boundaryx = 0. Therefore, the quasi-steady state
approximation for the adjoint equation (33) is reasonable.

Let z (χ, τ) = AT (y, x) λ (x, t), then, (15) and (16)
become

zχ + B>
y
A−>z − L>

1,y = 0 (41)

z0 = g>

yLzL +
(

f>
yL + g>

yLf>
y0

)

ν (42)

ν̇ =
(

f>
u

+ g>
u
f>
y0

)

ν + g>
u

zL + L>
2,u (43)

A first order finite-difference discretization can be used to
solve (41) and the boundary condition

zk+1 = zk − ∆χ
(

B>
y,iA

−>

i zk + L>
1,yi

)

(44)

z1 = g>
yM

zM +
(

f>
yM

+ g>
yM

f>
y1

)

ν (45)

Since the boundary condition (42) is periodic, the solution
of z results in a full matrix inversion at each time step. In
addition,ν must be solved simultaneously from (43) at each
time step. Comparing this to the implicit scheme, the quasi-
steady state approach requires fewer operations and hence a
more efficient method for solving the adjoint equation (15).

Based on the second-order gradient method, each each
iteration, the control variablev is updated as

v(p+1) = v(p) −
[

L
(p)

2,vv(p)

]−1 (

f>
v

µ + L>

2,v(p)

)

(46)

where we have replacedH2,vv with L2,vv by ignoring the
term fvvµ in order to simplify the calculation.

Thus, the control variablev depends on the solution ofµ
obtained fromν which requires solving the adjoint PDE and
ODE simultaneously. Thus, initially we guess a time history
for the control variablev (t). This information is then used to
solve the hyperbolic equation fory (x, t) forward in time. The
complete time history ofy (x, t) based on the initial guess of
the controlv (t) is then used to solve the adjoint equations
backward in time to obtainλ (x, t) andµ (t) simultaneously.
The control variablev (t) is then updated in the next iteration
from (46). This process is repeated until the solution of the
controlv (t) converges.

VI. NUMERICAL EXAMPLE

We now demonstrate the general theory by a numerical
example of a closed-loop fluid transport problem in a closed-
circuit wind tunnel as shown in Fig. 4.

Fig. 4 - Closed-Circuit Wind Tunnel

The fluid transport process in a closed-circuit wind tunnel is
a good example of a closed-loop transport process whereby the
fluid flow is recirculated through a compressor providing the
boundary control action. The compressor is controlled by two
auxiliary dynamical processes: a drive motor dynamics, and
an inlet guide vane (IGV) dynamics. By controlling the drive
motor speed and the IGV angle, the flow in the test section can
be set as desired. The fluid flow is governed by the following
hyperbolic system with a set of conserved variables; namely,
mass flowṁ, total pressurep0, and total temperatureT0. We
let y =

[

ṁ p0 T0

]

, then according to (3), the matrices
A andB are defined as

A =









u pA
p0

ṁu
2T0

ρ0c2

ρA u
[

1 − (γ−1)T
T0

]

ρ0c2u
T0

(γ−1)T
ρA − (γ−1)2uT

kp0
u
[

1 + (γ−1)T
T0

]









B =





ṁu
2 ξ

ρ0u3

2

(

T0

T − γ + 1
)

ξ

− (γ − 1)uTξ
(

T0

T − 1
)





whereu is the flow speed,p is the static pressure,T is the
static temperature,ρis the static density,c is the speed of
sound,M is the Mach number,A is the flow area,ξ is the
loss factor, andγ is the specific heat ratio.

The compressor provides a periodic boundary control atx =
0 andx = L which relates the conservation of mass flow, the
total pressure rise, and the total temperature rise that enable the
flow recirculation as a function of the boundary controlu that
comprises the compressor speedω and the IGV blade angleθ.
The drive motor and IGV dynamics dictate constraints on the
compressor speed and the IGV blade angle in such a way that
these parameters must obey the time varying dynamics of these
systems according to (8), wheref represents the dynamical
equation andv represents the control parameters of the drive
motor and IGV systems which in this case are the drive motor
rotor resistance and the IGV voltage.

A typical wind tunnel operation is to transfer the flow
condition in the test section from one Mach number to another.
Fig. 5 shows a typical operating envelope for a wind tunnel.
What we are interested in is to search for an optimal path of the
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Mach number transfer between two fix compressor operating
speeds as shown in Fig. 5 that minimizes the cost functional
defined in (9) with

L1 =
1

2
(y − yd)

>
P (y − yd)

L2 =
1

2
(u− ud)

>
Q (u − ud) +

1

2
(v − vd)

>
R (v − vd)
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Fig. 5 - Wind Tunnel Operating Envelope

The objective functionsL1 and L2 are convex for some
weighting matricesP ≥ 0, Q ≥ 0, and R > 0 and are
designed to seek a desired terminal condition, denoted by
the subscriptd, from some initial condition. The optimization
begins with an initial guess of the control variablev which
represents the control parameters for the drive motor and IGV
systems. The flow solution in the wind tunnel is then computed
forward in space and time from the method developed in
Section 5. Using the computed time histories of all the flow
variables, the adjoint solution is computed backward in space
and time using the implicit scheme first and then the quasi-
steady state scheme. A minor convergence problem with the
implicit scheme is observed when the solution appears to have
reached the bottom of the gradient “bowl”. The cost increases
slightly instead of remaining stable. On the other hand, the
quasi-steady state scheme demonstrates a good convergence
behavior. The convergence of the optimization is rapid after
only four iterations.
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Fig. 6 - Optimal Path Transition

Fig. 6 shows the optimal path of the Mach number transfer.
Fig. 7 illustrates the convergence of the control variablev

after just four iterations. Fig. 8 is a plot of the value of the
cost functional driven close to a minimum by the gradient
method. Fig. 9 is a plot of the hyperbolic solution that shows
the variation of Mach number in the flow as a function of
space and time.
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Fig. 7 - Optimal Control Variable
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Fig. 8 - Cost Functional Value

Fig. 9 - Hyperbolic Solution of Mach Number
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VII. CONCLUSIONS

We have presented an indirect numerical optimization
method using a continuous adjoint approach for a hyperbolic
equation with a nonlinear periodic boundary condition subject
to a nonlinear differential equation constraints. The continuous
adjoint-based optimization method provides a certain advan-
tage in that the adjoint solution can be formulated using a
different discretization scheme since the adjoint equation is
also a hyperbolic equation. A dual adjoint system is formulated
for a multi-objective cost functional comprising an objective
function defined over the hyperbolic solution domain and
a time-based objective function. The numerical method is
based on a second-order gradient method that can provide
an accelerated convergence if an initial starting solutionis
judiciously selected. The hyperbolic equation is solved in
forward space and forward time from the initial condition and
the periodic boundary condition sing an explicit scheme, wave
splitting method. Because of numerical stability, the adjoint
hyperbolic equation is integrated backward in time using an
implicit scheme. A quasi-steady state method for solving
the adjoint equation is introduced. A numerical example is
performed for a closed-loop fluid transport system. The results
show a fast convergence of the second-order gradient method.
The quasi-steady state method results in a more stable solution
of the adjoint equation than the implicit scheme.
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